
Challenges using FPGA Clusters
for Distributed CNN Training

Philipp Kreowsky∗†, Justin Knapheide∗†, Benno Stabernack∗†
∗Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, Berlin, Germany

{philipp.kreowsky, justin.knapheide, benno.stabernack}@hhi.fraunhofer.de
†University of Potsdam, Embedded Systems Architectures for Signal Processing, Potsdam, Germany

Abstract
An easy-to-use framework
for CNN training on network-
attached FPGA clusters:

• Training of deep neural
networks on FPGA clusters

• Arbitrary DAG structure
• Focus on layer parallelism
• Dedicated implementation

for each layer
• Implemented in SpinalHDL
• Resource estimates derived

from hardware description
• Automatic placement

strategy across FPGAs in
the cluster

Mapping a Network of Layers onto an FPGA Cluster

FPGA 0

FPGA 3 FPGA 2

FPGA 1

Plan
Conv

Add

Bias
ReLu

Fork
FIFO

Dense
GlobalAveragePool

SoftCross

Input
Output
Label

FPGA 0

FPGA 3
FPGA 1
FPGA 2

Cluster Switch

Host

Memory
DSPs
DRAM Bandwidth
Network Bandwidth
UDP Connections

Problem
We need to find mappings of L layers to N FPGAs, represented
as dl,n,c ∈ {0, 1} with 0 ≤ l < L, 0 ≤ n < N , c ∈ Cl, where
dl,n,c = 1 means layer l is placed on FPGA n with configuration c.
Cl is the set of all possible configurations for layer l.
Each layer must be placed exactly once with one configuration.

d̃l,n =
∑
c∈Cl

dl,n,c,
N−1∑
n=0

d̃l,n = 1 ∀l < L, c ∈ Cl (1)

These mappings need to respect the available resources Rdev
n,t ∈ R

for each device n and resource type t ∈ T . For now, we consider
the amount of on-chip memory, number of DSP cores and DRAM
bandwidth. For each layer- and device type, we require estimates
of the implementation’s achievable throughput Sl,n(c) ∈ R and re-
source consumption Rlayer

l,n,t(c) ∈ R depending on layer configuration
c.

L−1∑
l=0

∑
c∈Cl

dl,n,cR
layer
l,n,t(c) ≤ Rdev

n,t ∀n < N, t ∈ T (2)

Additionally, we need to consider the available network bandwidth
Cdev

n ∈ R. The required bandwidth C layer
l,k (t) between layers l and k

can be calculated as ŜFl,k, where Ŝ is the overall throughput and F
is the sum over all connections between l and k of the connection’s
feature map size.

L−1∑
l=0

L−1∑
k=0

d̃l,n

(
1− d̃k,n

)
C layer

l,k (t) ≤ Cdev
n ∀n < N (3)

Each network hop introduces some amount of latency, which can lead
to stalls when two branches that have taken different paths across the
cluster join. In order to avoid having to calculate and compensate for
these delays, we require joining branches to have taken an equal
number of network hops Hl ∈ N from the input.

Hl = Hk +

N−1∑
n=0

d̃l,n

(
1− d̃k,n

)
∀l, k < L, Fl,k > 0 (4)

Finally, we force input- and output layers onto FPGA 0.

d̃l,0 = 1 ∀l ∈ P, (5)

where P ⊂ {0..L− 1} is the set of input- and output layers.
Given these constraints, we want to maximize the overall throughput
Ŝ, which is equal to that of the slowest layer.

maximize Ŝ subject to Equations (1) to (5),

Ŝ ≤
N−1∑
n=0

∑
c∈Cl

dl,n,cSl,n(c) ∀l < L
(6)

Strategy
Until now, we use binary search until the throughput is known to be within 5 % of the achievable
throughput.

Simplified approach

• Select target throughput
• The optimization problem turns into a Constraint Satisfaction Problem
• Solvability check allows binary search for max throughput
• Pareto-optimal configurations considered for target throughput

Current further simplification

• Select one config per layer and device that meets target throughput
• Use achievable throughput as cost function
• For convolutions, we use DSPs core usage
• For smaller clusters and models, solved using CP-SAT Solver (Google OR-Tools)
• Runtime issues with larger models and clusters
• Future considerations: Explore greedy, annealing, or deep learning methods

Planning Times
Model Cluster Plan Pinned

Layers
Layers FPS Utilized DSPs

VGG mini 2 × 10AX115 7 min No 34 600 38.5 %
Demo 4 × 10AX115 3 min No 127 558 72.2 %

MobileNetV2
4 × AGFB014

21 min Yes 225 500 37.3 %
94 min No 225 516 37.8 %

6 × 10AX115
13 min Yes 240 696 81.2 %

169 min No 240 727 82.2 %

ResNet18 All Devices
51 min Yes 332 727 78.8 %
69 min No 332 800 88.1 %

All Devices: 1 × Agilex (AGFB027) + 4 × Agilex(AGFB014) + 6 × Arria(10AX115)

A typical CNN Layer Combination for Training

Backward

Parameter-
gradients

Gradient-
propagation

Cached

Forward

Conv Normalize ReLU

Conv
Back

Normalize
Back

ReLU
Back

Conv
Grad

Normalize
Grad

∇P

P

latency

P

P

∇P

FPL 2023, Gothenburg

