uni-potsdam.de

You are using an old browser with security vulnerabilities and can not use the features of this website.

Here you will see how you can easily upgrade your browser.

Q: Scientific service and infrastructure project

This project will provide support to the CRC by (a) advising other projects on experiment design, (b) helping projects to preregister their primary statistical analyses using the Open Science Foundation (https://osf.io/), (c) providing training in carrying out these analyses, and (d) helping with the post-publication data management and archiving for use in the public domain. This will be achieved through four work packages that (1) provide support to the CRC for optimising experiment design and analysis, (2) provide statistical education within the CRC, (3) assist in developing and maintaining a data repository to ensure preregistration, open access of data and code, and reproducibility, and (4) develop new statistical methods and computational tools, and software packages needed for the CRC, which will be provided for the public domain.

Staff

Prof. Dr. Ralf Engbert

PI Q

 

Campus Golm
Department of Psychology
House 14, Room 4.03
Karl-Liebknecht-Str. 24-25
14476 Potsdam

Prof. Dr. Shravan Vasishth

PI Q

 

Campus Golm
Department Linguistics
House 14, Room 2.34
Karl-Liebknecht-Strasse 24-25
14476 Potsdam

Dr. Daniel Schad

 

Campus Golm
Department Linguistics
House 14, Room 2.35
Karl-Liebknecht-Strasse 24-25
14476 Potsdam

David Ziegert

 

Campus Golm
Department Linguistics
House 14, Room 3.34
Karl-Liebknecht-Strasse 24-25
14476 Potsdam

Publications with scientific quality assurance

AuthorsYearTitelWhereProjectLink
Nicenboim, B.,  Roettger, T.B., & Vasishth, S.2018Using meta-analysis for evidence synthesis: The case of incomplete neutralization in German.Journal of Phonetics, 70 (Special Issue: Emerging Data Analysis in Phonetic Sciences), 39-55. doi:10.1016/j.wocn.2018.06.001Q
Nicenboim, B. & Vasishth, S. 2018Models of retrieval in sentence comprehension: A computational evaluation using Bayesian hierarchical modeling. Journal of Memory and Language, 99(April 2018), 1-34. doi:10.1016/j.jml.2017.08.004Q
Nicenboim, B., Vasishth, S., Engelmann, F., & Suckow, K. 2018Exploratory and confirmatory analyses in sentence processing: A case study of number interference in German. Cognitive Science, 42(Suppl. 4), 1075–1100. doi:10.1111/cogs.12589Q
Vasishth, S., Nicenboim, B., Beckman, M.E., Fangfang, L., & Kong, J.E.2018Bayesian data analysis in the phonetic sciences: A tutorial introduction.Journal of Phonetics, 71 (Special Issue: Emerging Data Analysis in Phonetic Sciences), 147-161. doi:10.1016/j.wocn.2018.07.008Q
Vasishth, S., Mertzen, D., Jäger, L.A., & Gelman, A.2018The statistical significance filter leads to overoptimistic expectations of replicability.Journal of Memory and Language, 103, 151-175. doi:10.1016/j.jml.2018.07.004B03, Q[Download]

Other publications

AuthorsYearTitelWhereProjectLink
Schad, D.J., Betancourt, M., & Vasishth, S.2019Toward a principled Bayesian workflow: A tutorial for cognitive science.Retrieved from osf.io/b2vx9 Q
Schad, D. J., & Vasishth, S. 2019The posterior probability of a null hypothesis given a statistically significant research result.arXiv preprint arXiv: 1901.06889 Q
Schad, D. J. ; Hohenstein, S. ; Vasishth, S. & Kliegl, R.2018How to capitalize on a priori contrasts in linear (mixed) models: A tutorial.arXiv preprint arXiv:1807.10451Q[Download]