Hao Tong
Photo: private

Dr. Hao Tong

Postdoctoral Researcher


Email: tongmpimp-golm.mpgde
ORCID
Google Scholar profile
GitHub profile

Hao Tong
Photo: private

Research Interests

Statistical Genetics Modelling: Quantitative genetics models for phenotype prediction and causal gene discovery.
Systems Biology Modelling: Molecular mechanisms using genome-scale metabolite networks and other biological networks.
Artificial Intelligence in Genetics: Machine learning / deep learning models for genetic architecture and environmental perturbation.
Multi-Omics Data Analysis: Integration of genomic data with intermediate molecular data to comprehensively interpret biological processes.

Education

Ph.D. in Systems Biology, Max-Planck-Institute of Molecular Plant Physiology & University of Potsdam, 2019

M.Sc. in Genetics, National Key Laboratory of Crop Genetic Improvement & Huazhong Agricultural University, 2015

B.Sc. in Biotechnology, Huazhong Agricultural University, 2012

Publications

Hao Tong, Anika Küken, Zoran Nikoloski (2020).
Integrating molecular markers into metabolic models improves genomic selection for Arabidopsis growth.                                                                                                                                                                                                                            
Nature Communications, 11:2410.

Hao Tong, Zoran Nikoloski (2020).
Machine learning approaches for crop improvement: Leveraging phenotypic and genotypic big data.                                                                                                                                                                                                                                             
Journal of Plant Physiology, 257:153354.

Hao Tong, Anika Küken, Zahra Razaghi-Moghadam, Zoran Nikoloski (2021).
Characterization of effects of genetic variants via genome-scale metabolic modelling.                                                                                                                                                                                                                                                                           
Cellular and Molecular Life Sciences, 78, 5123–5138.