uni-potsdam.de

Sie verwenden einen veralteten Browser mit Sicherheitsschwachstellen und können die Funktionen dieser Webseite nicht nutzen.

Hier erfahren Sie, wie einfach Sie Ihren Browser aktualisieren können.

Schliessen
Foto: SH Delatec

 

Marie Curie European Industrial Doctorates (EID) Cropstrengthen

The project provides advanced systems biology training for 5 ESRs who will develop novel methods for increasing crop strength and resistance to stress by alternative genetic and genomic, non-GMO, technologies:

(1) Selecting allelic variants of a novel gene identified by members of the consortium which regulates oxidative and abiotic stress tolerance and

(2) Molecular priming by biostimulants or low doses of H2O2 to induce stress-protective mechanisms in crops. This dual approach will meet the growing EU push towards secure, sustainable and safe means of food production (Dir.2009/128/EC & EU Reg. EC/178/2002). The genetic approaches are combined with high-throughput technologies for transcriptome, metabolome, and phenotypic analyses, combined with advanced bioinformatics.

Both approaches to increasing crop yield are growing in importance, with the biostimulants industry expected to reach $2.2B globally by 2018. Equipping ESRs with these skills will enable them to develop their research careers in academia or industry.

Training will be conducted at the University of Potsdam (UP, Coordinator), Germany, and two companies: BioAtlantis (BA), Ireland, and Enza Zaden (EZ), The Netherlands. Prof. B. Mueller-Roeber (UP) has extensive research management and teaching experience and will supervise the ESRs as PhD students. BA is internationally recognized for producing innovative biostimulants and has 3 patents filed, while EZ is among the top ten in vegetable breeding worldwide. All partners have experience in coordination and participation in EU FP7 projects. The expected results will increase our understanding of the molecular basis of stress tolerance and provide two alternative strategies for crop improvement and increasing food production. BA and EZ will ensure rapid dissemination of applied research to end users.

Marie Curie Initial Training Network (ITN) NICHE - Network for Integrated Cellular Homeostasis

Die Initiative wird von neun Gruppen aus den Niederlanden, Großbritannien, Deutschland und Spanien getragen. Das international zusammengesetzte Team setzt sich aus Vertretern der Diszipline Biochemie, Physiologie, Chemie, Molekularbiologie und Biophysik zusammen und bedient sich hochmoderster Techniken aus den Bereichen Spektroskopie und Mikroskopie, Deep-Sequencing-Technologien und "ab initio" Modellierung.  Das Ziel des ITN ist es, unser Verständnis der homöostatischen Mechanismen von Bakterien mit Hilfe prädiktiver Modellierung und experimenteller Ansätze zu fördern. Als Modellorganismus der Untersuchungen dient das Bakterium  Escherichia coli. Im Focus der Forschung zur Zellphysiologie und Membran-Biologie der Zellen liegt die ultrastrukturelle Analsyse des Bakteriums unter ionischen und osmotischen Stress-Bedingungen. Projektbeginn/Laufzeit: 1. Januar 2012/ 48 Monate Projektleiterin: Prof. Dr. Zoya Ignatova

Marie Curie Initial Training Network (ITN)  WallTraC-The Plant Cell Wall Training Consortium

 

Plant cell walls are the earth's most abundant source of terrestrial biomass. Growing cell walls can be considered as "fibre composites", where cellulose microfibrils are embedded in a matrix of complex glycans.

These biopolymer assemblies collectively determine the shape and mechanical properties of plant cells. It is becoming increasingly apparent (i) that cell wall glycans are diverse in structural terms; (ii) that these structures are developmentally regulated; and (iii) that not all cell walls in an organ are comprised of the same configurations of glycans. The architecture of plant cell walls is governed by the fine structure of their constitutive polymers, this fine structure having profound effects on polymers functional properties after extraction or in planta. The immense complexity and spatial & temporal versatility of cell wall glycans render a full understanding of their structure-function relationships extremely challenging for plant biology research and for the application and exploitation of results. An extended knowledge of cell wall structure & dynamics and a better understanding of the structure-function relationships of plant cell wall polymers are fundamental for the optimization of the uses of cell wall-derived materials in industrial contexts.

Projektleiter an der Universität Potsdam: Joachim Selbig

www.walltrac-itn.eu

Foto: SH Delatec