# The tougher, the better? How the interplay of search requirements and sanction threats affects compliance behavior and job finding



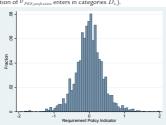
Patrick Arni (IZA Bonn) Amelie Schiprowski (IZA Bonn and DIW Berlin)

#### 1. MOTIVATION

- Enforcement of job search requirements increasingly employed to counteract moral hazard problems in Unemployment Insurance and the problems of the problems
- Not a 0-1 treatment, but a combination of requirement and enforcement parameters
  - Their design varies largely across OECD countries (c.f. Venn (2012))
- The understanding of the interplay of these parameters is crucial to determine how a job seeker is affected by the job search monitoring regime

- Unique register data: Monthly information on job search requirements, effort, (non-)compliance, warnings and enforced sand
- Intensive margin approach 

  We analyze the policy parameters of an implemented search monitoring regime


# 3. IDENTIFYING REQUIREMENT AND ENFORCEMENT POLICIES

#### 3a. Requirement s

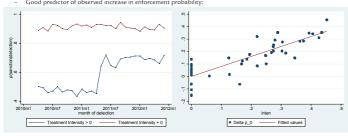
Identification challenges: Exclude (i) contact-related endogeneity and (ii) correlation with Public Employment Service (PES) enforcement policy fron variation in requirement levels

- $\, o \,$  Solution: exploit that different profession-groups are differently affected by PES-requirement policy
- Background: some PES implement a profession-specific, others a "one-fit-all" requirement threshold

And retain  $^{D}_{PES_{profession}}$  as an indicator for the profession-PES specific requirement policy (In final outcome equation, distribution of  $^{D}_{PES_{profession}}$  enters in categories  $D_{k}$ ).



### 3b. Enforcement probability $p_{\scriptscriptstyle 0}$


Identification challenge: Obtain policy-driven change in enforcement

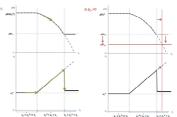
- → Solution: Quasi-experimental variation resulting from reform of UI law in April 2011:
  - Strengthened deadline for submission of job applications list
  - Moved some PES from "second deadline policy" to "no excuse policy"

Reform induced harmonization of enforcement practices across PES → Treatment intensity varies according to PES-level pre-enforcement

- → D-i-D setting with continuous treatment intensity:
  - $\label{eq:measure treatment intensity as } p(sunction|detection) \ \text{registered by each PES during the 6 pre-reform months} \\ \rightarrow p(s|d)_{pm}; \\ \text{Average } p(s|d)_{pm}; \\ 0.75 \\ \rightarrow \text{How far is a } PES' \ p(s|d)_{pm}; \\ \text{Proposition} \\ \text{The proposition} \\ \text{T$

  - Treatment intensity:  $inten=.75-p(s|d)_{pre}$  ; inten=0 if  $p(s|d)_{pre}>0.75$
- Good predictor of observed increase in enforcement probability




# 6. PRELIMINARY CONCLUSIONS

- Empirics confirm theory: Requirement and enforcement p
- Non-compliance increases with requirement regime
- Design of requirement and enforcement policies matters for the job seeker's job finding probability:
- High requirement can have negative impact on search success (quality-quantity tradeoff?)
- Job finding increases with sanction threat under high-requirement regir

## 2. GRAPHICAL ILLUSTRATION OF THEORETICAL PREDICTIONS

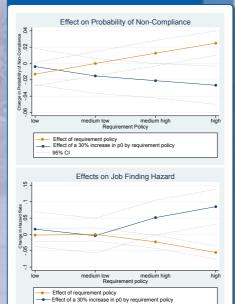
Policy changes of interest: Increase in Requirement Threshold  $(\Delta\;s_r>0)$  and Increase in Sanction Probability  $(\Delta\;p_0>0)$ 

Predictions result from Abbring/van den Berg/van Ours (EJ, 2005)



- → Relevance of sanction threat p0 increases with requirement s,
- Non-compliance behavior is a suitable outcome to indicate relevance of requirement policy from the job seeker's perspective
- Impacts on job finding ambiguous

## 4. FINAL OUTCOME EQUATION


1. Estimate joint effects of  $s_r$  and  $p_0$  on non-compliance probability

$$p(nc) = x'\beta + \delta_{s_i}D_{s_i} + \rho_{s_i} \times inten_{\Delta p_s} + \varphi_{s_i} \times post + \pi_{s_o, PES} + \mu_{season} + \gamma_{year} + u$$

2. Estimate joint effects of  $s_r$  and  $p_0$  on duration to job finding (controlling for realized sanction events)

$$\ln \theta' = \ln \lambda(t_{\rm c}) + x'\beta + \frac{\delta_{\rm c}D_{\rm c} + \rho_{\rm c} \times inten_{\Delta p_{\rm c}}}{\delta_{\rm c}D_{\rm c} + \rho_{\rm c} \times inten_{\Delta p_{\rm c}}} + \varphi_{\rm c} \times post + \pi_{\rm c, PES} + \pi_{\rm PES} + \mu_{\rm season} + \gamma_{\rm year}$$

#### 5. PRELIMINARY RESULTS

