Noname manuscript No.
(will be inserted by the editor)

Learning to Control a Structured-Prediction Decoder for
Detection of HTTP-Layer DDoS Attackers

Uwe Dick - Tobias Scheffer

the date of receipt and acceptance should be inserted later

Abstract We focus on the problem of detecting clients that attempt to exhaust server re-
sources by flooding a service with protocol-compliant HTTP requests. Attacks are usually
coordinated by an entity that controls many clients. Modeling the application as a structured-
prediction problem allows the prediction model to jointly classify a multitude of clients
based on their cohesion of otherwise inconspicuous features. Since the resulting output
space is too vast to search exhaustively, we employ greedy search and techniques in which a
parametric controller guides the search. We apply a known method that sequentially learns
the controller and the structured-prediction model. We then derive an online policy-gradient
method that finds the parameters of the controller and of the structured-prediction model in
a joint optimization problem; we obtain a convergence guarantee for the latter method. We
evaluate and compare the various methods based on a large collection of traffic data of a
web-hosting service.

1 Introduction

Distributed denial-of-service (DDoS) flooding attacks [37] intend to prevent legitimate users
from using a web-based service by exhausting server or network resources. DDoS attacks
can target the network level or the application level. One way for attackers to target the
network level is to continuously request TCP connections and leave the connection in an
incomplete state, which eventually exhausts the number of connections which the server
can handle; this is called SYN flooding. Adaptive SYN-received timeouts, packet-filtering
policies, and an increasing network capacity are making it more difficult to mount suc-
cessful network-level attacks [26,37]. By comparison, server resources such as CPU, I/O
bandwidth, database and disk throughput are becoming easier targets [4,28]. Attackers turn
towards HTTP-layer flooding attacks in which they flood services with protocol-compliant

U. Dick
University of Potsdam, Department of Computer Science, Potsdam, Germany
E-mail: uwedick @cs.uni-potsdam.de

T. Scheffer
University of Potsdam, Department of Computer Science, Potsdam, Germany
E-mail: tobias.scheffer @uni-potsdam.de

2 Uwe Dick, Tobias Scheffer

requests that require the execution of scripts, expensive database operations, or the trans-
mission of large files.

HTTP-layer attacks are more difficult to detect, because the detection mechanism ulti-
mately has to decide whether all connecting clients have a legitimate reason for requesting a
service in a particular way. In protocol-compliant application-level attacks, attackers have to
sign their TCP/IP packets with their real IP address, because they have to complete the TCP
handshake. One can therefore defend against flooding attacks by blacklisting offending IP
addresses at the network router, provided that attacking clients can be singled out.

In order to detect attacking clients, one can engineer features of individual clients, train
a classifier on labeled traffic data to detect attacking clients, and blacklist detected attackers.
We follow this approach and evaluate it empirically, but the following considerations already
indicate that it might work less than perfectly in practice. An individual protocol-compliant
request is rarely conspicuous by itself; after all, the service is there to be requested. Most
individual clients only post a small number of requests to a domain after which their IP ad-
dress is not seen again. This implies that classification of individual clients will be difficult,
and that aggregating information over requests into longitudinal client features [28,36,22]
will only provide limited additional information.

However, DDoS attacks are usually coordinated by an entity that controls the attacking
clients. Their joint programming is likely to induce some behavioral coherence of all at-
tacking clients. Features of individual clients cannot reflect this cohesion. But a joint feature
function that is parametrized with all clients x; that interact with a domain and conjectured
class labels y; for all clients can measure the behavioral variance of all clients that are la-
beled as attackers. Structured-prediction methods [20,32] match this situation because they
are based on joint feature functions of multiple dependent inputs xz; and their output values
y;. At application time, structured-prediction models have to solve the decoding problem of
maximizing the decision function over all combinations of class labels. If the dependencies
in the feature function are sequential or tree-structured, this maximization can be carried out
efficiently using, for instance, the Viterbi algorithm for sequential data. In general as well as
in this particular case, however, exhaustive search of the output space is intractable. More-
over, in our application environment, the search has to terminate after a fixed but a priori
unknown number of computational steps due to a real-time constraint.

Collective classification algorithms [23] conduct a greedy search for the highest-scoring
joint labeling of the nodes of a graph. They do so by iteratively relabeling individual nodes
given the conjectured labels of all neighboring nodes. We will apply this principle, and
explore the resulting algorithm empirically. More generally, when exhaustive search for a
structured-prediction problem is infeasible, an undergenerating decoder can still search a
constrained part of the output space [13]. Explicit constraints that make the remaining out-
put space exhaustively searchable may also exclude good solutions. One may instead resort
to learning a search heuristic. HC search [10, 11] first learns a heuristic that guides the search
to the correct output for training instances, and then uses this heuristic to control the decoder
during training and application of the structured-prediction model. We will apply this prin-
ciple to our application, and study the resulting algorithm.

The search heuristic of the HC-search framework is optimized to guide the decoder
from an initial labeling to the correct output for all training instances. It is subsequently
applied to guiding the decoder to the output that maximizes the decision function of the
structured-prediction model, while this model is being learned. But the decision function is
an imperfect model of the input-output relationship in the training data, especially while the
parameters of the decision function are still being optimized. One may argue that a heuristic
that does well at guiding the search to the correct output (that is known for the training

Learning to Control a Structured-Prediction Decoder for Detection of DDoS Attackers 3

instances) may do poorly at guiding it to the output that maximizes some decision function.
We will therefore derive a policy-gradient model in which the controller and the structured-
prediction model that uses the controller are learned in a joint optimization problem; we will
analyze convergence properties of this model.

Defense mechanisms against DDoS attacks have so far been evaluated using artificial
or semi-artificial traffic data that have been generated under plausible model assumptions of
benign and malicious traffic [28,36,22,8]. By contrast, we will compare all models under
investigation on a large data set of network traffic that we collect in a large shared web
hosting environment and classify manually. It includes unusual high-volume network traffic
for more than 1,546 domains over 22,645 time intervals of 10 seconds in which we observe
several million connections of more than 450,000 unique clients.

The rest of the paper is structured as follows. Section 2 derives the problem setting from
our motivating application. We model the application as an anomaly-detection problem in
Section 3, as the problem of independently classifying clients in Section 4, as a collective
classification problem in Section 5, and as a structured-prediction problem with a paramet-
ric decoder in Section 6. Section 7 discusses how all methods can be instantiated for the
attacker-identification application. We present an empirical study in Section 8; Section 9
discusses our results against the background of related work. Section 10 concludes.

2 Problem Setting, Motivating Application

This section first lays out the relevant details of the application and establishes a high-level
problem setting that will be cast into various learning paradigms in the following sections.

We focus on HTTP-layer denial-of-service flooding attacks [37], which we define to be
any malicious attempts at denying the service to its legitimate users by posting protocol-
compliant HTTP requests so as to exhaust any computational resource, such as CPU, band-
width, or database throughput. Our application environment is a shared web hosting service
in which a large number of domains are hosted in a large computing center. Each domain
continuously receives requests from many legitimate or attacking clients. A domain is con-
stituted by the top-level and second-level domain in the HOST field of the HTTP header
(“example.com”); a client is identified by its IP address.

The effects of an attack can be mitigated when the IP addresses of the attacking clients
can be identified: IP addresses of known attackers can be temporarily blacklisted at the
router. Anomalous traffic events can extend for as little as a few minutes; attacks can run for
several hours. The high-level view of the system consists of three parts: the web servers the
blacklisting mechanism, and the DDoS-attacker-detection mechanism that decides which
clients should be blacklisted.

The blacklisting mechanism resides at the main routers. It maintains a blacklist of IP
addresses, and filters incoming traffic by blocking any TCP/IP packets from clients on that
list. Blacklisting client IP addresses is the only feasible mitigation mechanism in our case.
If requests from attacking IP addresses were to be processed, inspected, and filtered based
on the individual payload, the servers would not be relieved sufficiently under an attack.

The attacker-detection mechanism listens to all TCP traffic between the web servers
and blacklisting entity. Since attackers usually target a specific domain, we split the overall
attacker-detection problem into an independent sub-problem for each domain. This allows
us to distribute the attacker-detection mechanism over multiple computing nodes, each of
which handles a subset of domains. As long as the number of connections to a domain per
unit of time, the number of clients that interact with the domain, and the estimated CPU

4 Uwe Dick, Tobias Scheffer

load used by a domain lie below safe lower bounds, the attacker-detection mechanism can
rule out the possibility of a DDoS attack to that domain and excludes its traffic from further
processing. If one of the thresholds is exceeded for some domain, then the attacker-detection
mechanism processes the traffic to that domain in batches of 10 seconds. In each 10-seconds
interval, the output is a list of IP addresses that should be blacklisted. This list is forwarded
to the blacklisting mechanism which takes the actual blacklisting action.

Hence, for each domain, we arrive at an independent learning problem that can be de-
scribed abstractly by an unknown distribution p(x,y) over sets x € X of clients x; that
interact with the domain within a 10-seconds interval and output variables y € Y(x) =
{—=1,1}" which label each individual client z; € x as legitimate (y; = —1) or attacker
(y; = +1). The number of observed clients x; € x may be different in each time inter-
val. In Sections 3 and 4, we will pursue approaches in which each client x; is individually
represented by a vector ®x(z;) that may depend on absolute features of x; as well as on
features of x; that are measured relatively to the set of all clients x that currently interact
with the domain. In Sections 5 and 6, we will represent the entire set of clients x and a
candidate labeling y in a single joint feature representation ®(x,y) and thereby arrive at a
structured-prediction problem.

The following example illustrates why the problem of labeling sets x € X" of clients x;
that interact with the same domain within a time interval can be modeled as a structured-
prediction problem. Consider that an attacker controls a large network of client computers
distributed around the world. The attacker tries to exhaust the database capacity of a domain
by posting new-user registration requests. Each individual client posts only three such re-
quests, which is inconspicuous. It would be virtually impossible for a classifier to identify
the individual requests as being malicious, because each one of them is protocol-compliant
and lacks any salient or unusual property.

A structured prediction model, on the other hand, can take joint attributes ®(x,y) of
sets of clients into account. For instance, since all attacking clients post similar new-user
registration requests, the inner-group standard deviation of the URL string length will be
much smaller for the attacking clients than for mixed sets of attacking and legitimate clients.
A structured-prediction model can assign a negative weight to a feature that measures the
inner-group standard deviation of the URL string length for all clients that are labeled as
attackers. It can therefore learn to label clients in such a way that groups with small inner-
group standard deviation of certain traffic parameters tend to have the same class label. We
will discuss the feature representation that we employ for independent classification and for
structured-prediction models in Section 7.4.

The classification problem for each 10-seconds interval has to be solved within ten
seconds—otherwise, a backlog of decisions could build up, especially under an attack. The
number of CPU cycles that are available within these 10 seconds is not known a priori
because it depends on the overall server load. For the structured-prediction models, we en-
code this anytime constraint by limiting the number of search steps to a random number 7’
that is governed by some distribution. We can disregard this anytime constraint for mod-
els that treat clients as independent (Sections 3 and 4), because the resulting classifiers are
sufficiently fast at calculating the predictions.

Misclassified legitimate requests can potentially result in lost business while misclassi-
fied abusive requests consume computational resources; when CPU capacity, bandwidth, or
database throughput capacities are exhausted, the service becomes unavailable. The result-
ing costs will be reflected in the optimization criteria by cost terms of false-negative and
false-positive decisions. When the true labels of the clients x are y, a prediction of ¥ incurs
costs ¢(x,y,¥) > 0. We will detail the exact cost function in Section 7.

Learning to Control a Structured-Prediction Decoder for Detection of DDoS Attackers 5

With the exception of the anomaly-detection models that we will discuss in Section 3,
training the attacker-detection model requires labeled training data. Section 8.1 describes
the largely manual process in which we determine which client IP addresses are in fact
attackers.

3 Anomaly Detection

In our application, an abundance of network traffic can be observed. However, manually
labeling clients as legitimate and attackers is an arduous effort (see Section 8.1). Therefore,
our first take is to model attacker detection as an anomaly-detection problem.

3.1 Problem Setting for Anomaly Detection

In this formulation of the problem settings, the set of clients x = {x1, ..., Zm } that are ob-
served in each 10-seconds interval is decomposed into individual clients x ;. At application
time, clients are labeled independently based on the value of a parametric decision function
fo(®x(z;)) which is a function of feature vector ®x(z;). We will define feature vector
®, () in Section 7.4.2; for instance, it includes the number of different resource paths that
client z; has accessed, the number of HTTP requests that have resulted in error codes, both
in terms of absolute counts and in proportion to all clients that connect to the domain.

At learning time, an unlabeled sample x1, . . ., X, of sets of clients is available. Most of
the clients in the training data are legitimate, but some fraction consists of attacking clients.
The unlabeled training instances are pooled into a set of feature vectors

LAY = | J{®x,(@i1), -, ®x, (wim,) }i (1

i=1

training results in model parameters ¢.

3.2 Support Vector Data Description

Support-vector data description (SVDD) is an anomaly-detection method that uses unla-
beled data to find a model for unusual instances. The decision function of SVDD is

13V PP (@ () = || Bx(25) — Bl @)

that is, SVDD classifies a client as an attacker if the distance between feature vector ®x ()
and the parameter vector ¢ that describes normal traffic exceeds a threshold 7.

X {—1 if f5VPP (®x(zj)) <7 3)

Yi = +1 else

4 Independent Classification

This section models the application as a standard classification problem.

6 Uwe Dick, Tobias Scheffer

4.1 Problem Setting for Independent Classification

Clients x = {x1,...,xm} of each 10-seconds interval are treated as independent obser-
vations, described by feature vectors ®x(z;). As in Section 3.1, these vector represen-
tations are classified independently, based on the value of a parametric decision function
fo(®x(x;)). However, features may be engineered to depend on properties of all clients
that interact with the domain in the time interval.

In the independent classification model, misclassification costs have to decompose into
a sum over individual clients: c(x,y,¥) = >_7L; c(x;,y;,9;)- At learning time, a la-
beled sample (x1,¥1),...,(Xn,yn) is available. Each pair (x;,y;) contains instances
Zi1,--.,%im, and corresponding labels v; 1, ..., Yi,m,. The training data are pooled into
independent pairs of feature vectors and corresponding class labels

LIC = U{(‘I)x7 (aji,l)a yi71)7 ceey ((I)X7 (xi,m,»), yi,ml)}a “4)

=1

and training results in model parameters ¢.

4.2 Logistic Regression

Logistic regression (LR) is a linear classification model that we use to classify clients inde-
pendently. The decision function f£ R (®x(x;)) of logistic regression squashes the output
of a linear model into a normalized probability by using a logistic function:

1
LR N
f¢ (QX(‘(L.])) - 1 +e*¢Tq’x($j) : ®
Labels are assigned according to
LA R (@) < 4 ©)
Yi +1 else

Logistic regression models are trained by maximizing the regularized conditional log-
likelihood of the training class labels over the parameters ¢. Costs are incorporated by
weighting the conditional log-likelihood of each observation with the cost of misclassifying
it.

5 Structured Prediction with Approximate Inference

In Section 4, the decision function has been evaluated independently for each client. This
prevented the model from taking joint features of particular groups of clients based on its
predicted labels into account.

Learning to Control a Structured-Prediction Decoder for Detection of DDoS Attackers 7

5.1 Problem Setting for Structured Prediction with Approximate Inference

In the structured-prediction paradigm, a classification model infers a collective assignment y
of labels to the entirety of clients x that are observed in a time interval. In our application, all
clients that interact with the domain in the time interval are dependent. The model therefore
has to label the nodes of a fully connected graph. This problem setting is also referred to as
collective classification [23].

Predictions y of all clients are determined as the argument y that maximizes a decision
function fg(x,y) which may depend on a joint feature vector ®(x, y) of inputs and outputs.
The feature vector may reflect arbitrary dependencies between all clients x and all labels y.
At application time, the decoding problem

¥y =~ argmax fy(X,y) @)
yeY(x)

has to be solved approximately within an interval of 10 seconds. The number of process-
ing cycles that are available for each decision depends on the overall server load. We
model this by constraining the number of steps which can be spent on approximating the
highest-scoring output to 7" plus a constant number, where T ~ p(T'|7) is governed by
some distribution and its value is not known in advance. At training time, a labeled sample
L ={(x1,y1),---,(Xn,yn)} is available.

5.2 Iterative Classification Algorithm

The iterative classification algorithm (ICA) [24] is a standard collective-classification
method. We use ICA as a method of approximate inference for structured prediction. ICA
uses a feature vector @ y (z;) for individual nodes and internalizes labels of neighboring
nodes into this feature vector. For this definition of features, decision function fg(x,y) is a
sum over all nodes. For a binary classification problem, we can use logistic regression and
the decision function simplifies to

+1

~1. ®

- Ff (@xy(z) ify;
folx,y) =3 { 1¢— fé‘/R(sz,jy(xj)) if yj’

ICA only approximately maximizes this sum by starting an initial assignment y which, in
our, case, is determined by logistic regression. It then iteratively changes labels §; such
that the summand for j is maximized, until a fixed point is reached or the maximization is
terminated after T" steps. When a fixed point ¥ is reached, then ¥ satisfies

—1if £ (Pry(xs) < 3
+1 otherwise.

Vji?)jZ{ C))

6 Structured Prediction with a Parametric Decoder

In this section, we allow for a guided search of the label space. Since the space is vastly
large, we allow the search do be guided by a parametric model that itself is optimized on the
training data.

8 Uwe Dick, Tobias Scheffer

6.1 Problem Setting for Structured Prediction with Parametric Decoder

At application time, prediction ¥ is determined by solving the decoding problem of Equa-
tion 7; decision function f4(x,y) depends on a feature vector ®(x,y). The decoder
is allowed 7' (plus a constant number of) evaluations of the decision function, where
T ~ p(T|r) is governed by some distribution and its value is not known in advance. The
decoder has parameters 1) that control this choice of labelings.

In the available 7" time steps, the decoder has to create a set of candidate labelings
Yr(x) for which the decision function is evaluated. The decoding process starts in a state
Yo (x) that contains a constant number of labelings. In each time step ¢ + 1, the decoder
can choose an action a¢+1 from the action space Ay, ; this space should be designed to be
much smaller than the label space))(x). Action a++1 creates another labeling y¢41; this
additional labeling creates successor state Yy +1(x) = a1 (Yi(x)) = Ye(x) U {yt+1}-

In a basic definition, Ay, could consist of actions ay; (forally € Y; and 1 < j < ny,
where nx is the number of clients in x) that take output y € Y;(x) and generate labeling
y by flipping the labeling of the j-th client; output Yiy1(x) = Yi(x) U {y} is Yi(x)
plus this modified output. This definition would allow the entire space)(x) to be reached
from any starting point. In our experiments, we will construct an action space that contains
application-specific state transactions such as flip the labels of the k addresses that have the
most open connections—see Section 7.3.

The choice of action a1 is based on parameters 1) of the decoder, and on a feature vec-
tor W(x, Yz(x), ar+1); for instance, actions may be chosen by following a stochastic policy
at+1 ~ Ty(x, Yi(x)). We will define feature vector W(x, Y (x), az+1) in Section 7.4.4;
for instance, it may contain the difference between the geographical distribution of clients
whose label is changed by action a1 and the geographical distribution of all clients with
that same label. Choosing an action as1 requires an evaluation of ¥ (x, Y;(x), at+1) for
each possible action in Ay, (). Our problem setting is most useful for applications in which
evaluation of W(x, Y:(x), at+1) takes less time than evaluation of ®(x, y+41)—otherwise,
it might be better to evaluate the decision function for a larger set of randomly drawn out-
puts than to spend time on selecting outputs for which the decision function should be eval-
uated. Feature vector ¥ (x, Y;(x), a;+1) may contain a computationally inexpensive subset
of q)(X, yt+1).

After T steps, the decoding process is terminated. At this point, the decision-function
values fg of a set of candidate outputs Y7 (x) have been evaluated. Prediction y is the
argmax of the decision function over this set:

y = argmax fe(X,y). (10)
YEYT (%)
At training time, a labeled sample L = {(x1,¥y1), ..., (Xn,¥n)} is available.

6.2 HC Search

HC search [9] is an approach to structured prediction that learns parameters 1) of a search
heuristic, and then uses a decoder with this search heuristic to learn parameters ¢ of a
structured-prediction model (the decision function fg is called the cost-function in HC-
search terminology). We apply this principle to our problem setting.

Learning to Control a Structured-Prediction Decoder for Detection of DDoS Attackers 9

At application time, the decoder produces labeling y that approximately maximizes
fo(x,y) as follows. The starting point Yy(x) of each decoding problem contains the la-
beling produced by the logistic regression classifier (see Section 4.2). Action a¢+1 € Ay, is
chosen deterministically as the maximum of the search heuristic fy, (¥ (x, Y3(x), at+1)) =
W W(x,Yi(x),ai+1). After T steps, the argmax y of fs(x,y) over all outputs in
Yr(x) =ar(...a1(Yo(x))...) (Equation 7) is returned as prediction.

At training time, HC search first learns a search heuristic with parameters 1) as follows.
Let Ly be an initially empty set of training constraints for the heuristic. For each training
instance (x;,y;), starting state Yo (x;) contains the labeling produced by the logistic regres-
sion classifier (see Section 4.2). Time ¢ is then iterated from 1 to an upper bound T on the
number of time steps that will be available for decoding at application time. Then, iteratively,
all elements a1 of the finite action space Ay, (x;) and their corresponding outputs y; 4
are enumerated and the action a; ; that leads to the lowest-cost output y£+1 is determined.
Since the training data are labeled, the actual costs of labeling x; as y} 1 when the correct
labeling would be y; can be determined by evaluating the cost function. Search heuristic f,
has to assign a higher value to a;; than to any other a¢+1, and the costs ¢(X;,yi,yi+1)
of choosing a poor action should be included in the optimization problem. Hence, for each
action ar1 € Ay, (x;), constraint

Fo (B (%, Ye(xi), a11)) — fup (O (x4, Ye(x4), aet1))

> \/C(thwy;-i,-l) _C(X’iay’iay;k_i,_l) (11)

is added to L. Model v should satisfy the constraints in L.,. We use a soft-margin version
of the constraints in L, and squared slack-terms which results in a cost-sensitive multi-class
SVM (actions a are the classes) with margin scaling [32].

After parameters @ have been fixed, parameters ¢ of structured-prediction model
fo(x,y) = ¢ ®(x,y) are trained on the training data set of input-output pairs (x;,y;)
using SVM-struct with margin rescaling and using the search heuristic with parameters 1
as decoder. Negative pseudo-labels are generated as follows. For each (x;,y;) € L, heuris-
tic ¢ is applied 7" times to produce a sequence of output sets Yo(x;), . .., Y7 (x;). When
y = argmaxgcy, (x,) ¢ ®(x,y) # y: violates the cost-rescaled margin, then a new
training constraint is added, and parameters ¢ are optimized to satisfy these constraints.

6.3 Online Policy-Gradient Decoder

The decoder of HC search has been trained to locate the labeling y that minimizes the costs
c(x:,yi,y) for given true labels. However, it is then applied to finding candidate label-
ings for which f4(x,y) is evaluated with the goal of maximizing f4. However, since the
decision function fg may be an imperfect approximation of the input-output relationship
that is reflected in the training data, labelings that minimize the costs ¢(x;, y;,y) might be
different from outputs that maximize the decision function. We will now derive a closed op-
timization problem in which decoder and structured-prediction model are jointly optimized.
We will study its convergence properties theoretically.

We now demand that during the decoding process, the decoder chooses action at+1 €
Ay, which generates successor state Y;11(x) = a¢41(Yz(x)) according to a stochastic
policy, as+1 ~ Ty (X, Yi(x)), with parameter ¢p € R™? (where my is the dimensionality
of the decoder feature space) and features W(x, Y;(x), at+1). At time T, the prediction is
the highest-scoring output from Y7 (x) according to Equation 7.

10 Uwe Dick, Tobias Scheffer

The learning problem is to find parameters ¢ and) that minimize the expected costs
over all inputs, outputs, and numbers of available decoding steps:

argmin By vy 7y, (x) |€(X,y,argmax fg(x,¥) (12)

b, yeYr(x)
with (x,y) ~p(x,y), T ~p(T|7) (13)
Yr(x) ~ p(Yr(x)|myp, %, T) (14)

The costs c(x,y,¥) of the highest-scoring element § = argmaxy, ¢y, (x) fo (X, y’') may
not be differentiable in ¢. Let therefore loss (x,y, Yr(x);¢) be a differentiable ap-
proximation of the cost that ¢ induces on the set Y (x). Section 7.2 instantiates the
loss for the motivating problem. Distribution p(x,y) is unknown. Given training data
S ={(x1,¥1),- .-, (Xm,ym)}, we approximate the expected costs (Equation 12) by the
regularized expected empirical loss with convex regularizers {24 and §2y;:

¢*,¢" = argmin Z Vo u,r(X,y) + 2¢ + 24 (15)
PY (xy)es

with Vi (x,y) = Z(pmr) 3 p(YT(x)|7T¢,X,T)€(x,y,YT(X);¢)). (16)

Yr(x)

Equation 15 still cannot be solved immediately because it contains a sum over all values of T’
and all sets Y (x). To solve Equation 15, we will liberally borrow ideas from the field of re-
inforcement learning. First, we will derive a formulation of the gradient Vo, Vi 6.~ (X, y).
The gradient still involves an intractable sum over all sequences of actions, but its formu-
lation suggests that it can be approximated by sampling action sequences according to the
stochastic policy. By using a baseline function—which are a common tool in reinforcement
learning [16]—we can reduce the variance of this sampling process.

Let a1..7 = a1,...,ar with a1 € Ay, be a sequence of actions that executes a
transition from Yo(x) to Y7 (x) = ar(...(a1(Yo(x)))...). The available computation

time is finite and hence p(7T'|7) = 0 forall T > T for some 7. We can rewrite Equation 16:

T

Ve . 9)=3" (plar_21.Y0()) 3 pTIDx. v, ar (.. (@ (Y6(x0)) ..)).
1...T T -

with p(aq 7|, Yo(x)) = H o (ae]x, ae—1(. .. (Yo(x)...)). 17

Equation 18 defines Dy ; as the partial gradient V4 of the expected empirical loss for an
action sequence a1, . . ., ap that has been sampled according to p(a; 7|, Yo(x)).

T
Der(ar 7,Yo(x);¢) =) p(TIN)Vel(x,y,ar(... (a1(Yo(x)))...);) (18)

The policy gradient V, of a summand of Equation 17 is

T
Vyp(ar 7%, Yo(x) Y p(TIn)lx,y, ar(... (a1(Yo(x))) ...);)

T=1

Learning to Control a Structured-Prediction Decoder for Detection of DDoS Attackers 11

T

= (play_21,Yo(x)) Y Vo logmy(arfx,ar—i(... (a1 (¥o(x))...))) (19
T=1
T
> p(TInex,y, ar(... (@ (Yo(x)) ...); b).
T=1

Equation 19 uses the “log trick” Vyp = plog Vp; it sums the gradients of all actions
and scales with the accumulated loss of all initial subsequences. Baseline functions [16]
reflect the intuition that a7 is not responsible for losses incurred prior to T'; also, relating
the loss to the expected loss for all sequences that contain ar reflects the merit of ar bet-
ter. Equation 20 defines the policy gradient for an action sequence sampled according to
p(a; 7|, Yo(x)), modified by baseline function B.

E¢ B r(ay. 7, Yo(x);%, ®)

Vy logmy(ar|x,ar—1(... (a1(Yo(x)))...)) (20)

M=

T

(

Lemma 1 (General gradient) Ler Vs 4 - (X,y) be defined as in Equation 17 for a differ-
entiable loss function (. Let Dy ; and E¢ g . be defined in Equations 18 and 20 for any
scalar baseline function B(a1...T,Yo(x); ¥, ¢, x). Then the gradient of Vs (X, y) is

Il
i

hE!

p(tT)(x,y; ar(.. - (a1(Yo(x))) - ..); #) — Blar..7-1, Yo(x); ¥, ¢,X))

Il
)ﬂ

VeuVouwrxy) = Y plar 7l Yo(x))

- T 17
[EZ,B,T(G1.,.T,Y0(X);¢,¢) s Do (ay . 1, Yo(x); @) } Q21

Proof The gradient stacks the partial gradients of 1) and ¢ above each other. The par-
tial gradient VVe oy -(x,y) = >, play 7Y, Y0(x))Der(a;r 1, Y0(x); @)
follows from Equation 18. The partial gradient VeV o -(X,¥) =
>oa, 2 Plar 7Y, Yo(x))Ee,B,r(a). 1, Yo(x);h, @) is a direct application of the
Policy Gradient Theorem [31,27] for episodic processes.

The choice of a baseline function B influences the variance of the sampling process,
but not the gradient; a lower variance means faster convergence. Let Fy g - T be a sum-
mand of Equation 20 with a value of 7. Variance E[(E¢ g - 1(a1. 7, Yo(X);%,) —
E[E¢ B,» (a1 5, Yo(X);%, @) |a1“T])2|a1”T} is minimized by the baseline that weights
the loss of all sequences starting in ar (. .. (a1(Yo(x))) . ..) by the squared gradient [16]:

Yars, Glar.r41,Y0)?Q(ar.. 741, Yo)

Ba(ar.r,Yo(x); 9, ¢, x) = D ar,, Glar.r41,Y0)? 22
T
with Q(a1..7+1,Y0) =E Z PPy, ai(... (Yo(x)) ...);) |ar.r1 | (23)
Aryo... T t=T+1

and G(al_.T+1, Yo) :V IOg Ww(aT+1|X, aT(. .. (a1 (Yo(X))) e)) (24)

12 Uwe Dick, Tobias Scheffer

This baseline function is intractable because it (intractably) averages the loss of all action
sequences that start in state Yr(x) = ar(...a1(Yo(x))...) with the squared length of
the gradient of their first action ar. Instead, the assumption that the expected loss of all
sequences starting at 7" is half the loss of state Y7-(x) gives the approximation:

Buw(a1...1, Yo(X); %, ¢, %) QZt o POy ar (a1 (Yo(x)).);). (25)

We will refer to the policy-gradient method with baseline function Byy, as online policy
gradient with baseline. Note that inserting baseline function

T

Br(ar..,Yo(x);9,¢,%) = = Y _pt)(x,y,ai(... (a1(Yo(x)...);¢) (26)

t=1

into Equation 20 resolves each summand of Equation 21 to Equation 19, the unmodified
policy gradient for a; 5. We will refer to the online policy-gradient method with base-
line function BRr as online policy gradient without baseline. Algorithm 1 shows the online
policy-gradient learning algorithm. It optimizes parameters 1) and ¢ using a stochastic gra-
dient by sampling action sequences from the intractable sum over all action sequences of
Equation 21 Theorem 1 proves its convergence under a number of conditions. The step size
parameters a(7) have to satisfy

ZZO a(i) = o0, ZZO a(i)? < oo. 27

Loss function ¢ is required to be bounded. This can be achieved by constructing the loss
function such that for large values it smoothly approaches some arbitrarily high ceiling C.
However, in our case study we could not observe cases in which the algorithm does not con-
verge for unbounded loss functions. Baseline function B is required to be differentiable and
bounded for the next theorem. However, no gradient has to be computed in the algorithm.
All baseline functions that are considered in Section 7 meet this demand.

Algorithm 1 Online Stochastic Policy-Gradient Learning Algorithm

Input: Training data S, starting parameters 1), @.
1: lett = 0.
2: repeat
3: Draw (x,y) uniformly from S
4: Sample action sequence a5 with each a¢
50 Y =9 —ali)(Ee (a1, Yo(X); 4,
6: P = — a(i)(Dy,r(ay 7, Yo(x);9;)
7: increment ¢.
8: until convergence

Return ;, ¢;

7Tw (X at— 1(al(YO(x))...)).
s)+Vw9w)
+ Ve 24,)

Theorem 1 (Convergence of Algorithm 1) Let the stochastic policy my, be twice differ-
entiable, let both wy, and V 1y be Lipschitz continuous, and let V., log my, be bounded.
Let step size parameters o(i) satisfy Equation 27. Let loss function { be differentiable in
@ and both £ and V 4L be Lipschitz continuous. Let £ be bounded. Let B be differentiable
and both B and ¥V 4 B be bounded. Let Q24 = 1||@||%, 2y = 2|\ ||>. Then, Algorithm 1
converges with probability 1.

Learning to Control a Structured-Prediction Decoder for Detection of DDoS Attackers 13

Proof For space limitations and in order to improve readability, throughout the proof we
omit dependencies on x and Yp(x) in the notations when dependence is clear from the
context. For example, we use p(a; f|1) instead of p(a; |v, Yo(x)). We use Theorem
2 from Chapter 2 and Theorem 7 from Chapter 3 of [6] to prove convergence. We first
show that the full negative gradient — 3=,) Vy ¢V, 0, (X,¥) — o) 1) is
Lipschitz continuous. B

Let L(ap 5,¢) = Z;‘F:Tp(t)é(x, v, a:(..Yo(x)..); ¢). We proceed by showing that

play. 7|$)Eepr (a1, 739, ¢) = X (plar. 71%) Vo logmy(ar|¥) (L(ag, 7, ¢) —
B(a1..7—1,%,¢))) is Lipschitzin [¢p T, ¢ "] . It is differentiable in [¢) ", ¢ '] per defi-
nition and it suffices to show that the derivative is bounded. By the product rule,

Vy,¢(play. 7|Y)Vy log my(ar|y)(Lar, 7, @) — Blar.7-1,%, ¢)))
=Vy,o(play, 7|tp)Vylogmy(ar|y))(Liar, 1, @) — Blai.7-1,9, ¢)) (28)
+play 7l) Vylogmy(ar|tp)Vey ¢ (Llar, 1, ¢) — Blai.r—1,%,¢)). (29)

We can see that line 29 is bounded because p, V., log 7y, Vg L and Vg o, B are bounded
by definition and products of bounded functions are bounded. Regarding line 28, we state
that L and B are bounded by definition. Without loss of generality, let 7" = 1.

Vi (play, 7|9)Vy log Ty (a1|th))
= Vg (Vymy(ar)play 7larp)) (30)
=play. 7la19))VyVymy(ar|h) + Vymy(ar[p) Vyplas plar,) (31)

Equation 30 follows from pVylogp = Vap. The left summand of Equation 31
is bounded because both p and V., V,my, are bounded by definition. Furthermore,
Vyplay 7ltp) = Vymy(az)plas plh) + my(a2) Vyp(ag rltp) is bounded because
V7 (at) and p(a,. 7|1) are bounded for all ¢ and we can expand Vyp(as 5|9p) re-
cursively. From this it follows that the right summand of Equatio 31 is bounded as well.
Thus we have shown the above claim.

p(aqy |Y)De (aq_7; @) is Lipschitz because p(a, 5|1) is Lipschitz and bounded
and D, , is a sum of bounded Lipschitz functions. The product of two bounded Lipschitz
functions is bounded. [y1 P, 'ygng}T is obviously Lipschitz as well, which concludes the
considerations regarding the full negative gradient.

Let Mip = [Ee,pr(ar. 759 ¢;) ", Der(ay 754,) ']T
Z(x,y) V0 Vip,.0,,7(X,¥)), where E¢ g 7 (a1 17;%;, ¢;) and Dy 7 (ay. 73 1p;) are sam-
ples as computed by Algorithm 1. We show that { M;} is a Martingale difference sequence
with respect to the increasing family of o-fields F; = o ([¢g , g], M1, ..., M;),i > 0.
That is, Vi € N, E[M;4+1|F;] = 0 almost surely, and {M;} are square-integrable with
E[||Mit1|?1F:] < K1+ ||[@] 4,17 ||?) almost surely, for some K > 0.

E[M;1|Fn] = 0 is given by the definition of M;;q above. We have to show
E[|M;1]?|1F] < K1 + ||[¢], 9]]"||?) for some K. We proceed by showing that
for each (x,y,a;) it holds that [[Ee,p,r(ay. 7%, ®;) ", Der(ar. z39;) '1T[* <
K(1+|[¢],%.]]7]|?). From that it follows that

1Y play 719)[Eepr(ar 7%, ¢) ", Derlay 7¢) 1|

X,y a1

<K@+ o] /1717

and || Mi11]|®> < 4K (14 ||[¢; %,] ||?) which proves the claim.

14 Uwe Dick, Tobias Scheffer

Regarding Ey p -, we assume that ||V log 7y ||? is bounded by some K’ and it
follows that || 3°7._, Vy log my (ar|x, ar—1(..Yo(x)..)||? is also bounded by T2K".
||£(x,y,gT(..YO(x)..);qf))||2 < K'(1 4 ||¢||*) and B bounded per assumption and
thus 7 p(HF(x, v, an(Yo(3).) ()i 8) — Blarr—1:) < K'(1+ [[9])
with some K’. It follows that ||[E¢ g +(a; ;% ¢,)|> < 2T K"K'(1 + ||¢o|?). As
Vel(x,y,ar(..Yo(x)..); ¢) is bounded per assumption, ||D,.||> < K’ for some
K" > 0. The claim follows: [|[E¢,p,r(ay 3%, ¢;) " Der(ay 739, 17| =
1Be,pr (a1, 3%, ®)|1* + [1Der(ar 759)* < K" + 2" K"K'(1 + ||¢]*) <
K" +T2K”K/(1 + ||[¢T5¢T}T”2)-

We can now use Theorem 2 from Chapter 2 of [6] to prove convergence by identifying
function h([¢; , %,] ") as assumed in the assumptions of that theorem with the full negative
gradient —3° Vo oV 6.7 (x,y) — [129] 1 ¢:]T. The theorem states that the
algorithm converges with probability 1 if the iterates [(JS;'—JF17 w;rﬂ]—r stay bounded.

Now, let h(§) = h(r§)/r. Next, we show that lim, o hr(§) = hoo(§) exists and
that the origin in R™' ™2 is an asymptotically stable equilibrium for the o.d.e. £(t) =
hoo (€(t)). With this, Theorem 7 from Chapter 3 of [6]—originally from [7]—states that the
iterates stay bounded and Algorithm 1 converges. Next, we show that A meets (A4):

hr(®,9)
= 23S plon 1) [Beprar i r,70) T Declon 7))

Xy a1t

+ 1/r[nrp] yere]

T

]T

S

=3 " play 7)Y [Vymy(arlrp) ' (Llar 7,7¢) — Blar.7-1))/r,

X,y a1 .t T=1
T T
play plrp)Der(ay 73r¢) /1] + [n) 120],

VT, L and B are all bounded and it follows that
play. zlr) Yoy [Vymy(arlry) T (Lag, 7.7¢) — Blar.r-1))/r — 0. The
same holds for the other part as p(a; |ry) and Dy ;(a; 5;7¢) are bounded. It follows
that hoo([1p 7,0 "]7) = [119, 120/ | . Therefore, the ordinary differential equation
£(t) = hoo(£(t)) has an asymptotically stable equilibrium at the origin, which shows that
(A4) is valid.

7 Identification of DDoS Attackers

We will now implement a DDoS-attacker detection mechanism using the techniques that we
derived in the previous sections. We engineer a cost function, suitable feature representations
® and W, policy 7y, and loss function ¢ that meet the demands of Theorem 1.

7.1 Cost Function

False-positive decisions (legitimate clients that are mistaken for attackers) lead to the tem-
porary blacklisting of a legitimate user. This will result in unserved requests, and potentially

Learning to Control a Structured-Prediction Decoder for Detection of DDoS Attackers 15

lost business. False-negative decisions (attackers that are not recognized as such) will result
in a wasteful allocation of server resources, and possibly in a successful DDoS attack that
leaves the service unavailable for legitimate users. We decompose cost function ¢(x,y,y)
for a set of clients x into the following parts.

We measure two cost-inducing parameters of false-negative decisions: the number of
connections opened by attacking clients and the CPU use triggered by clients’ requests.
According to the experience of the data-providing web hosting service, the same damage is
done by attacking clients that a) collectively initiate 200 connections per 10-seconds interval
t and b) collectively initiate scripts that use 10 CPUs for 10 seconds. However, those costs
are not linear in their respective attributes. Instead, only limited resources are available, such
as a finite number of CPUs, and the rise in costs of two scripts that use 80% or 90%, resp.,
of all available CPUs is different from the rise in costs of two scripts that use 20% or 30%
of CPUs. We define costs incurred by connections initiated by attackers to be quadratic in
the number of connections. Similarly, costs for CPU usage are also quadratic.

The hosting service assesses that blocking a legitimate client incurs the same cost as
opening 200 HTTP connections to attackers in an interval or wasting 100 CPU seconds.
Also, by blocking 50 connections of legitimate client the same cost is added. Based on these
requirements, we define costs

1 . 1 . 2
c(x,y,y) = Z 1+ 50 X #connections by x; + (— Z #connections by xl)

N 200 N
iy =—1,9;=+1 ziyi=+1,9,=—1
1 . 2

+ (m g CPU seconds initiated by ac,)

ziyi=+1,9;=—1

7.2 Loss Function

In order for the online policy-gradient method to converge, Theorem 1 states that loss func-
tions ¢ need to be differentiable and both ¢ and V/ have to be Lipschitz continuous. We
discuss loss functions in this section. As mentioned in Section 6.3, the boundedness as-
sumption on loss functions can be enforced by smoothly transitioning the loss function to
a function that approaches some arbitrarily high ceiling C. We first define the difference in
costs of a prediction y and an optimal label y™* as p(y y) = c(x,y,y) — c(x,y,y").

We denote the margin as gx y (y*,§; 0) = V/o(¥,y*) — ¢ (®(x,¥) — ®(x,y")). The
clipped squared hinge loss is differentiable:

0 if /p(¥,y*) <o (B(x,9) - ®(x,¥"))
by (5 950) = 4§ gx,y (¥*, ¥ $)? if 0< ¢’ (®(x,9)— ®(x,y") < Vp(¥,5%)
20T (B(x,¥) — B(x,y*) +2 if ¢T(B(x,¥) — B(x,y*)) <0

Equation 32 defines the loss that ¢ induces on Y7 (x) as the average squared hinge loss of
all labels in Y7 (x) except the one with minimal costs, offset by these minimal costs.

gh(x) Y, YT(X)? d)) - C(X7 Y,y) + |YT(X) 1 R R hxv)’(y » Y5 ¢) (32)
YEYT(x),y#y*

with y* = argmin c(x,y,y)
YEYT

In contrast to the standard squared margin-rescaling loss for structured prediction that uses
the hinge loss of the output that maximally violates the margin, here we average the Huber

16 Uwe Dick, Tobias Scheffer

loss over all labels in Y7 (x); this definition of ¢}, is differentiable and Lipschitz continuous,
as required by Theorem 1. Online policy gradient employs loss function ¢}, in our exper-
imentations. We will refer to HC search with loss function ¢;, as HC search with average
margin and will also conduct experiments with HC search with max margin by using the
standard squared margin-rescaled loss

Un(x,y,Yr(x),¢) = max max{gxy(y",¥:9),0}". (33)

a.
YEYT (%), 3Ay*

7.3 Action Space and Stochastic Policy

This section defines the action space Ay, (x;) of HC search and the online policy-gradient
method as well as the stochastic policy 7 (x, Yz (x)) of online policy-gradient.

The action space is based on 21 rules » € R that can be instantiated for the elements
vy € Yi(x); the action space Ay, contains all instantiations a;+1 = (r,y) that add a new
labeling r(y) to the successor state: Yz41(x) = Yz(x) U {r(y)}. We define the initial
set Yp to contain labels {—1}"* and {+1}"*, where nx is the number of clients in x.
Some of the following rules refer to the score of a binary classifier that classifies clients
independently; we use the logistic regression regression classifier as described in Section 4.2
in our experiments.

— Switch the labels of the 1, 2, 5, or 10 clients from —1 to 41 that have the highest number
of connections, the highest score of the baseline classifier, or CPU consumption. All
combinations of these attributes yield 12 possible rules.

— Switch the labels of the client from —1 to 1 that has the second-highest number of
connections, independent classifier score, or CPU consumption (3 rules).

— Switch the label of the client from 1 to —1 that has the lowest or second-lowest number
of connections, baseline classifier score, or CPU consumption (6 rules).

— Switch all clients from —1 to +1 whose independent classifier score exceeds -1, -0.5, 0,
0.5, or 1 (5 rules).

Theorem 1 requires that the stochastic policy be twice differentiable in 1) and that both 7y,
and V. mybe Lipschitz continuous. We define 7y, as

exp(’L/JT\I’(X, Yi(x), at41)))
ZaeAyt eXp(Tl’T‘I’(X, i/t(X), a))

Ty (at+1]%, Yi(x)) =

7.4 Feature Representations

We engineer features that refer to base traffic parameters that we explain in Section 7.4.1.
From these base traffic parameters, we derive feature representations for all learning ap-
proaches that we study. Figure 1 gives an overview of all features.

7.4.1 Base Traffic Parameters

In each 10-seconds interval, we calculate base traffic parameters of each client that connects
to the domain. For clients that connect to the domain over a longer duration, we calculate
moving averages that are reset after two minutes of inactivity. On the TCP protocol level,
we extract the absolute numbers of full connections, open connections, open and resent FIN

Learning to Control a Structured-Prediction Decoder for Detection of DDoS Attackers 17

Base Traffic Parameters D, (x)
For each count-based base traffic parameter:
Geo-Features - absolute value, globally normalized
- Geographic region - log absolute count
- sum over all clients of domain, globally normalized
HTTP Layer - log-sum over all clients of domain, globally normalized
- # connections with response codes 3xx - 5x | - absolute value, normalized over allclents of domain
- # HTTP 1.0 connections Additional:
- values of several header fields(Accept-Language, Content- frequencies of specific header field values
Type, Connection, Accept-Charset, Accept-Encoding, Referer) frequencies of abstracted resource types (plain,
- abstract type of User-Agent (mobile, crawler,other) script, picture, media, other,none)
- resource path file ending (if specified) entropy (for response code, resource type]
- # different resource paths
- frequency of requesting most common path
- ratios of request types (GET, POST, ...) Dy ()
- # connections with query string
- average query-string length -all attributes of ®, (x;)
 referer is domain itself - # clients classified as +1
-~ # clients classified as -1
TCP/IP Layer
- #full connections ®(x,y) *
- # open connections
- #open FIN packets - independent-classifier scores X1, yifif* (@, (x,))
-#resent FIN packets For groups of clients labeled +1 and -1:
- # RST packets - inner-group mean of all base traffic parameters
- : ::("g’;‘y‘:: ;’::::: - inner-group standard deviation of base parameters
o packets - inter-group differences between base parameters
- # resent SYNACK packets
- # empty connections
- # connections closed before handshake W(x, Y, (x), ags1) y
- incoming payload per connection
- outgoing payload per connection For group of clients whose label is changed by action
- average time until first FIN packet | - clients distance to group mean of base parameters
- average time until connection is closed - clients distance to group minimum
- average response time - mean value above and below cutoff value of action

Fig. 1 Feature representations

packets, timeouts, RST packets, incoming and outgoing packets, open and resent SYNACK
packets, empty connections, connections that are closed before the handshake is completed,
incoming and outgoing payload per connection. We determine the average durations until
the first FIN packet is received and until the connection is closed, as well as the response
time.

From the HTTP protocol layer, we extract the number of connections with HTTP re-
sponse status codes 3xx, 4xx, and 5xx, the absolute counts of HTTP 1.0 connections and
of the values of several HTTP header fields (Accept-Language, Content-Type, Connection,
Accept-Charset, Accept-Encoding, Referer). We also extract User-Agent and define mobile
and crawler which count all occurrences of a predefined set of known mobile user agents
(Android and others) and crawlers (GoogleBot and others), respectively.

We count the number of different resource paths that a client accesses and also count
how often each client requests the currently most common path on the domain. If a spe-
cific resource is directly accessed we extract and categorize the file ending into plain, script,
picture, download, media, other, none, which can give a hint on the type of the requested re-
source. We measure the fractions of request types per connection (GET, POST, or OTHER).
We extract the number of connections with a query string and the average length of each
query in terms of number of fields per client. We count the number of connection in which
the referrer is the domain itself. Geographic locations are encoded in terms of 21 parameters
that represent a geographic region.

7.4.2 Input Features for SVDD, Logistic Regression and ICA

Independent classification uses features ®x (x;) that refer to a particular client z; and to the
entirety of all clients x that interact with the domain. For each of the count-style base traffic
parameters, ®x (x;) contains the absolute value, globally normalized over all clients of all
domains, a logarithmic absolute count, the globally normalized sums and log-sums over all
clients that interact with the domain, and the absolute values, normalized by the values of all
clients that interact with the domain. For HTTP response code, resource type header fields,

18 Uwe Dick, Tobias Scheffer

we also determine the entropy and frequencies per client on for all clients on the domain.
See also Fig 1.

Feature vector @y (z;) for ICA contains all features from ®(z;) plus the numbers
of clients that are assigned class +1 and —1, respectively, in X, y.

7.4.3 Features for Structured Prediction

Feature vector ®(x,y) contains as one feature the sum lelel Yj f£ R(®y(x;)) of scores
of a previously trained logistic regression classifier over all clients x; € x. In addition,
we distinguish between the groups of clients that y labels as —1 and +1 and determine
the inner-group means, inner-group standard deviations, inter-group differences of the base
traffic parameters. This results in a total of 297 features.

7.4.4 Decoder Features

For HC search and online policy gradient, the parametric decoders depend on a joint feature
representation W (x, Y;(x), ar+1) of input x and action at+1 = (r,y). It contains 92 joint
features of the clients whose label a+1 changes and the group (clients of positive or negative
class) that at41 assigns the clients to. Features include the clients’ distance to the group
mean and the clients’ distance to the group minimum for the base traffic parameters. For
the fourth group of control actions, the feature representation includes the mean values of
these same base attributes for all clients above and below the cutoff value. In order to save
computation time, the mean and minimal group values before reassigning the clients are
copied from ®(x,y) which must have been calculated previously.

7.4.5 Execution-Time Constraint

We model distribution p(7'|7) that limits the number of time steps that are available for HC
search and online policy gradient as a beta distribution with & = 5 and 3 = 3 that is capped
at a maximum value of 7' = 10. We allow ICA to iterate over all instances for five times;
the results do not improve after that. The execution time of logistic regression is negligible
and therefore unconstrained.

8 Experimental Study

This section explores the practical benefit of all methods for attacker detection.

8.1 Data Collection

In order to both train and evaluate the attacker-detection models, we collect a data set of
TCP/IP traffic from the application environment. We focus our data collection on high-
traffic events in which a domain might be under attack. When the number of connections
to a domain per unit of time, the number of clients that interact with the domain, and the
CPU capacity used by a domain lie below safe lower bounds, we can rule out the possibility
of a DDoS attack. Throughout an observation period of several days, we store all TCP/IP
traffic to any domain for which a traffic threshold is exceeded starting 10 minutes before the

Learning to Control a Structured-Prediction Decoder for Detection of DDoS Attackers 19

threshold is exceeded and stopping 10 minutes after no threshold is exceeded any longer.
During the 10 minutes before and after each event, around 80% of the 10-second intervals
are empty.

This data collection procedure creates a sample of positive instances (attacking clients)
that reflects the exact distribution which the attacker-detection system is exposed to during
regular operations, because the attacker-detection model is applied when a domain exceeds
the same traffic-volume and CPU thresholds. It creates a sample of negative instances (legit-
imate clients) that covers the operational distribution and also includes additional legitimate
clients observed within 10 minutes of an unusual traffic event. Our intuition is that includ-
ing additional legitimate clients that interact with the domain immediately before or after
an attack in the training and evaluation data should make the model more robust against
false-positive classifications.

We will refer to the entirety of traffic to a particular domain that occurs during one of
these episodes as an event. Over our observation period, we collect 1,546 events. We record
all traffic parameters described in Section 7.4. All data of one domain that are recorded
within a time slot of 10 seconds are stored as a block. The same threshold-based pre-filtering
is applied in the operational system, and therefore our data collection reflects the distribution
which the attacker-detection system is exposed to in practice.

We then label all traffic events as attacks or legitimate traffic and all clients as attackers
or legitimate clients in a largely manual process. In a joint effort with experienced adminis-
trators, we decide for each of the 1,546 unusual event whether it is in fact a flooding attack.
For this, we employ several tools and information sources. We search for known vulnerabil-
ities in the domain’s scripts, analyze the domain’s recent regular connection patterns, check
for unusual geo-location patterns and analyze the query strings and HTTP header fields.
This labeling task is inherently difficult. On one hand, repeated queries by several clients
that lead to the execution of a CPU-heavy script with either identical or random parameters
might very likely indicate an attack. On the other hand, when a resource is linked to by a
high-traffic web site and that resource is delivered via a computationally expensive script,
the resulting traffic may look very similar to traffic observed during an attack and one has to
search for and check the referrer for plausibility to identify the traffic as legitimate.

After having labeled all events, we label individual clients that connect to a domain
during an attack event. We use several heuristics to group clients with a nearly identical and
potentially malicious behavior and label them jointly by hand. We subsequently label the
remaining clients after individual inspection.

In total, 50 of the 1,546 events are actually attacks with 10,799 unique attackers. A total
of 448,825 client IP addresses are labeled as legitimate. In order to reduce memory and
storage usage we use a sample from all 10-second intervals that were labeled. We draw 25%
of intervals per attack and 10% of intervals (but at least 5 if the event is long enough) per
non-attack event. Our final data set consists of 1,096,196 labeled data points; each data point
is a client that interacts with a domain within one of the 22,645 non-empty intervals of 10
seconds.

8.2 Experimental Setting

Our data includes 50 attack events; we therefore run 50-fold stratified cross validation with
one attack event per fold. Since the attack durations vary, the number of test instances varies
between folds. We determine the costs of all methods as the average costs over the 50 folds.

20 Uwe Dick, Tobias Scheffer

Table 1 Costs, true-positive rates, and false-positive rates of all attacker-detection models. Costs marked
with “x” are significantly lower than the costs of logistic regression

Classification Method Mean costs per fold TPR FPR (x10~%)
No filtering 3.363 £+ 1.348 0 0
SVDD 2.826 + 1.049 0.121 £0.036 | 149.8 £89.5
Log. Reg. w/o domain-dependent features 1.322 £0.948 0.394 + 0.056 7.0+£2.1
Logistic Regression 1.045 £ 0.715 0.372 + 0.056 2.1+0.6
ICA 0.946 £ 0.662x 0.369 £ 0.056 3.2+£1.0
HC search with average margin 1.042 £0.715 0.406 4+ 0.056 9.1+4.2
HC search with max-margin 1.040 £ 0.714x 0.398 + 0.056 7.0+3.3
Policy gradient with baseline function 0.945 £+ 0.664x* 0.394 + 0.055 3.7£1.2
Policy gradient without baseline function 0.947 + 0.665% 0.394 + 0.055 3.7£1.2

In each fold, we reserve 20% of the training portion to tune the hyperparameters of all
models by a grid search.

8.3 Reference Methods

All previous studies on detecting and mitigating application-layer DDoS flooding attacks
are based on anomaly-detection methods [37,28,36,8,22]. A great variety of heuristic and
principled approaches is used. In our study, we represent this family of approaches by SVDD
which has been used successfully for several related computer-security problems [12,15].
Prior work generally uses smaller feature sets. Since we have not been able to improve
our anomaly-detection or classification results by feature subset selection, we refrain from
conducting experiments with the specific feature subsets that are used in published prior
work.

Some prior work uses features or inference methods that cannot be applied in our ap-
plication environment. DDosShield [28] calculates an attack suspicion score by measuring
a client’s deviation from inter-arrival times and session workload profiles of regular traffic.
Monitoring workload profiles is not possible in our case because the attacker-detection sys-
tem is running on a different machine; it cannot monitor the workload profiles of the large
number of host computers whose traffic it monitors. DDosShield also uses a scheduler and
prioritizes requests by suspicion score. This approach is also not feasible in our application
environment because it still requires all incoming requests to be processed (possibly by re-
turning an error code). Xie and Yu [36] also follow the anomaly-detection principle. They
employ a hidden Markov model whose state space is the number of individual web pages.
In our application environment, both the number of clients and of hosted individual pages
are huge and prohibit state inference for of each individual client.

8.4 Results

Table 1 shows the costs, true-positive rates, and false-positive rates of all methods under
investigation. All methods reduce the costs that are incurred by DDoS attacks substan-
tially at low false-positive rates. SVDD reduces the costs of DDoS attacks compared to
not employing any attacker-detection mechanism (no filtering) by about 16%. Logistic re-
gression reduces the costs of DDoS attacks compared (no filtering) by about 69%; online
policy gradient reduces the costs by 72%. Differences between no filtering, SVDD, and
logistic regression are highly significant. Cost values marked with an asterisk star (“x”)

Learning to Control a Structured-Prediction Decoder for Detection of DDoS Attackers 21

3.0 T T T T T T T T

25 8

ICA
- —— HC search with max-margin
§ —— Logistic Regression
2.0 —— SVDD n
Policy Gradient
15} g

02 03 04 05 06 07 08 09 10

Fraction of Training Data Sequences

Fig. 2 Learning curves over varying fractions of training events.

are significantly lower than logistic regression in a paired t-test at p < 0.1. While HC
search is only marginally (insignificantly) better than logistic regression, all other structured-
prediction models improve upon logistic regression. Policy gradient with baseline function
incurs marginally lower costs than policy gradient without baseline function and ICA, but
the differences are not significant.

Logistic regression w/o domain-dependent features does not get access to features that
take into account all other clients of that domain and to the entropy features. This shows
that engineering context features into the feature representation of independent classifica-
tion already leads to much of the benefit of structured prediction. From a practical point of
view, all classification methods are useful, reduce the costs associated with DDoS attacks by
around 70% while misclassifying only an acceptable proportion (below 10~?) of legitimate
clients. We conclude that ICA and policy gradient achieve a small additional cost reduction
over independent classification of clients.

8.5 Analysis

In this section, we quantitatively explore which factors contribute to the residual costs of
structured prediction models. The overall costs incurred by policy gradient decompose into
costs that are incurred because fg fails to select the best labeling from the decoding set
Yr(x), and costs that are incurred because decoder 7, approximates an exhaustive search
by a very narrow and directed search that is biased by 1.

We conduct an experiment in which decoder 7y, is learned on training data, and a perfect
decision function fg is passed down by way of divine inspiration. To this end, we learn 7y,
on training data, use it to construct decoding sets Y7 (x;) for the test instances, and identify
the elements y = argminerT(xi) ¢(x4,¥i,y) that have the smallest true costs; note that
this is only possible because the true label y; is known for the test instances. We observe
costs of 0.012 4-0.008 for the perfect decision function, compared to costs of 0.945 4+ 0.664

22 Uwe Dick, Tobias Scheffer

when ¢ is learned on training data. The costs of a perfect decoder that exhaustively searches
the space of all labelings, in combination with perfect decision function f, would be zero.
This implies that the decoder with learned parameters 1 performs almost as well as an
(intractable) exhaustive search; it contributes only 1.3% of the total costs whereas 98.7% of
the costs are due to the imperfection of fg. Increasing the decoding time 7" does not change
these results.

This leaves parameter uncertainty of ¢ caused by limited labeled training data and the
definition of the model space as possible sources the residual costs. We conduct a learning
curve analysis to explore how decreasing parameter uncertainty decreases the costs. We
determine costs for various fractions of training events using 10-fold cross validation in
Figure 2. We use 10-fold cross validation in order to make sure that each test fold contains
at least one attack event when reducing the number of events to 0.2. Since Table 1 uses 50-
fold cross validation (which results in a higher number of training events), the end points of
Figure 2 are not directly comparable to the values in Table 1. Figure 2 shows that the costs of
all classification methods continue to decrease with an increasing number of training events.
A massively larger number of training events would be required to estimate the convergence
point. We conclude that parameter uncertainty of ¢ is the dominating source of costs of all
classification models. Anomaly-detection method SVDD only requires unlabeled data that
can be recorded in abundance. Interestingly, SVDD does not appear to benefit from a larger
sample. This matches our subjective perception of the data: HTTP traffic rarely follows a
“natural” distribution; anomalies are ubiquitous, but most of the time they are not caused by
attacks.

8.6 Feature Relevance

For the independent classification model, leaving out features that take into account all
clients that connect to the domain deteriorates the performance (see Line 3 of Table 1. We
have not been able to eliminate any particular group of features by feature subset selection
without deteriorating the system performance. Table 2 shows the most relevant features; that
is, the features that have the highest average weights (over 50-fold cross validation) in the
logistic regression model.

8.7 Execution Time

In our implementation, the step of extracting features ® takes on average 1 ms per domain
for logistic regression and ICA. The additional calculations take about 0.03 ms for logistic
regression and 0.04 ms for ICA with five iterations over the nodes which results in nearly
identical total execution times of 1.03 and 1.04 ms, respectively.

HC search and online policy gradient start with an execution of logistic regression. For
T = 10 decoding steps, repeated calculations of ®(x,y) and ¥(x, Y;(x), a) lead to a total
execution time of 3.1 ms per domain in a high-traffic event.

9 Discussion and Related Work

Mechanisms that merely detect DDoS attacks still leave it to an operator to take action.
Methods for detecting malicious HTTP requests can potentially prevent SQL-injection and

Learning to Control a Structured-Prediction Decoder for Detection of DDoS Attackers 23

Table 2 Most relevant features of fg

Weight | Description
3.01 | Average length of query strings of client
-2.38 | Number of different resource paths of client
2.34 | Sum of incoming payload of all clients of domain
2.27 | Fraction of connections of client that request the most frequent resource path
2.25 | Sum of response times of all clients of domain
2.05 | Sum of response times of client
1.64 | Fraction of connections for domain that accepts any version of English (e.g., en-us) in Accept-
Language
-1.46 | Entropy of request type (GET/POST/OTHER)
-1.32 | Sum of outgoing payload of all clients
1.27 | Sum of number of open FINs of all clients at end of 10-seconds interval
1.23 | Average length of query string per connection
-1.21 | Fraction of connections for domain that accepts any language other than EN, DE, ES, PT, CN,
RU in Accept-Language
1.19 | Fraction of all connections of all clients that query most frequent path
1.17 | Sum of durations of all connections of all clients of domain
1.13 | Fraction of connections of client that accepts any version of English (e.g., en-us) in Accept-
Language
-1.13 | Fraction of combined connections of all clients that directly request a picture type
-1.11 | Fraction of connections of client that specified HTTP header field Content-Type as any text
variant
-1.09 | Fraction of connections of client that accepts any language other than EN, DE, ES, PT, CN,
RU in Accept-Language
1.08 | Log-normalized combined outgoing payload of client
-1.07 | Fraction of all connections of all clients that specified HTTP header field Content-Type as any
text variant

cross-site scripting attacks, but their potential to mitigate DDoS flooding attacks is limited,
because all incoming HTTP requests still have to be accepted and processed. Defending
against network-level DDoS attacks [26,37] is a related problem; but since network-layer
attacks are not protocol-compliant, better detection and mitigation mechanisms (e.g., adap-
tive timeout thresholds, ingress/egress filtering) are available.

Since known detection mechanisms against network-level DDoS attacks are fairly effec-
tive in practice, our study focuses on application-level attacks—specifically, on HTTP-level
flooding attacks. Prior work on defending against application-level DDoS attacks has fo-
cused on detecting anomalies in the behavior of clients over time [28,36,22,8]. Clients that
deviate from a model of legitimate traffic are trusted less and less, and the rate at which
their requests are processed is throttled. Trust-based and throttling approaches leave it nec-
essary to accept incoming HTTP requests, maintain records of all connecting clients, and
process the requests—possibly by returning an error code instead of the requested result. In
our application environment, this would not sufficiently relieve the servers. Prior work on
defending against application-level DDoS attacks have so far been evaluated using artificial
or semi-artificial traffic data that have been generated under model assumptions of benign
and offending traffic. This paper presents the first large-scale empirical study based on over
1,500 high-traffic events that we detected while monitoring several hundred thousand do-
mains over several days.

Detection of DDoS attacks and malicious HTTP requests have been modeled as anomaly
detection and classification problems. Anomaly detection mechanisms employ a model of
legitimate network traffic [36]—and treat unlikely traffic patterns as attacks. For the detec-
tion of SQL-injection, cross-site-scripting (XSS), and PHP file-inclusion (L/RFI), traffic can

24 Uwe Dick, Tobias Scheffer

be modeled based on HTTP header and query string information using HMMs [5], n-gram
models [35], general kernels [12], or other models [29]. Anomaly-detection mechanisms
were investigated, from centroid anomaly-detection models [18] to setting hard thresh-
olds on the likelihood of new HTTP requests given the model, to unsupervised learning
of support-vector data description (SVDD) models [12,15].

Classification-based models require traffic data to be labeled; this gives classification
methods an information advantage over anomaly-detection models. In practice, network
traffic rarely follows predictable patterns. Spikes in popularity, misconfigured scripts, and
crawlers create traffic patterns that resemble those of attacks; this challenges anomaly-
detection approaches. Also, in shared hosting environments domains appear and disappear
on a regular basis, making the definition of normal traffic even more challenging. A binary
SVM trained on labeled data has been observed to consistently outperform a one-class SVM
using n-gram features [35]. Similarly, augmenting SVDDs with labeled data has been ob-
served to greatly improve detection accuracy [15]. Other work has studied SVMs [17,21]
and other classification methods [19,25, 14].

Structured-prediction algorithms jointly predict the values of multiple dependent output
variables—in this case, labels for all clients that interact with a domain—for a (structured)
input [20,32,2]. At application time, structured-prediction models have to find the highest-
scoring output during the decoding step. For sequential and tree-structured data, the highest-
scoring output can be identified by dynamic programming. For fully connected graphs, exact
inference of the highest-scoring output is generally intractable. Many approaches to approx-
imate inference have been developed; for instance, for CRFs [1], structured SVMs [13], and
general graphical models [3]. Several algorithmic schemes are based on iterating over the
nodes and changing individual class labels locally. The iterative classification algorithm [24]
for collective classification simplistically classifies individual nodes, given the conjectured
labels of all neighboring nodes, and reiterates until this process reaches a fixed points.

Online policy-gradient is the first method that optimizes the parameters of the
structured-prediction model and the decoder in a joint optimization problem. This allows us
to prove its convergence for suitable loss functions. By contrast, HC search [9, 10] first learns
a search heuristic that guides the search to the correct labeling for the training data, and sub-
sequently learns the decision function of a structured-prediction model using this search
heuristic as a decoder. Shi et al. [30] follow a complementary approach by first training a
probabilistic structured model, and then using reinforcement learning to learn a decoder.

Wick et al. [34] sample structured outputs using a predefined, hand-crafted proposer
function that samples outputs sequentially. In other work [33] a cascade of Markov mod-
els is learned that uses increasing higher-order features and prunes unlikely local outputs
per cascade level. This work assumes a ordering of such cliques into levels, which is not
applicable for fully connected graphs.

10 Conclusion

We have engineered mechanisms for detection of DDoS attackers based on anomaly detec-
tion, independent classification of clients, collective classification of clients, and structured-
prediction with HC search. We have then developed the online policy-gradient method that
learns a decision function and a stochastic policy which controls the decoding process in an
integrated optimization problem. We have shown that this method is guaranteed to converge
for appropriate loss functions. From our empirical study that is based on a large, manually-
labeled collection of HTTP traffic with 1,546 high-traffic events we can draw three main

Learning to Control a Structured-Prediction Decoder for Detection of DDoS Attackers 25

conclusions. (a) All classification approaches outperform the anomaly-detection method
SVDD substantially. (b) From a practical point of view, even the most basic logistic re-
gression model is useful and reduces the costs by 69% at a false-positive rate of 2.1 X 1074
(c) ICA and online policy gradient reduce the costs just slightly further, by about 72%.

Acknowledgment

This work was supported by grant SCHES540/12-2 of the German Science Foundation DFG
and by a grant from STRATO AG. We would like to thank the anonymous reviewers for
their helpful comments.

References

1. Discriminative probabilistic models for relational data. In Eighteenth Conference on Uncertainty in
Artificial Intelligence, 2002.

2. Max-margin Markov networks. In Advances in Neural Information Processing Systems, volume 16,
2004.

3. Approximated structured prediction for learning large scale graphical models. Arxiv 1006.2899, 2010.

4. C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite, K. Rajamani, and
W. Zwaenepoel. Bottleneck characterization of dynamic web site benchmarks. Technical report TR-
02-391, Rice University, 2002.

5. Davide Ariu, Roberto Tronci, and Giorgio Giacinto. HMMPayl: An intrusion detection system based on
hidden Markov models. Computers & Security, 30(4):221-241, 2011.

6. Vivek S. Borkar. Stochastic approximation: A Dynamical Systems Viewpoint. Cambridge University
Press, 2008.

7. Vivek S. Borkar and Sean P. Meyn. The ODE method for convergence of stochastic approximation and
reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447-469, 2000.

8. S. Renuka Devi and P. Yogesh. Detection of application layer DDsS attacks using information theory
based metrics. Department of Information Science and Technology, College of Engineering Guindy
10.5121/csit.2012.2223, 2012.

9. Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. HC-search: Learning heuristics and cost func-
tions for structured prediction. In AAAI, volume 2, page 4, 2013.

10. Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. HC-search: A learning framework for search-
based structured prediction. Journal of Artificial Intelligence Research, 50(1):369-407, 2014.

11. Janardhan Rao Doppa, Alan Fern, and Prasad Tadepalli. Structured prediction via output space search.
The Journal of Machine Learning Research, 15(1):1317-1350, 2014.

12. Patrick Diissel, Christian Gehl, Pavel Laskov, and Konrad Rieck. Incorporation of application layer
protocol syntax into anomaly detection. In Information Systems Security, pages 188-202. Springer,
2008.

13. T. Finley and T. Joachims. Training structural SVMs when exact inference is intractable. In Proceedings
of the International Conference on Machine Learning, 2008.

14. Farnaz Gharibian and Ali A Ghorbani. Comparative study of supervised machine learning techniques for
intrusion detection. In Annual Conference on Communication Networks and Services Research, pages
350-358. IEEE, 2007.

15. Nico Gornitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. Toward supervised anomaly detection.
Journal of Artificial Intelligence Research, 46:235-262, 2013.

16. Evan Greensmith, Peter L. Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
estimates in reinforcement learning. The Journal of Machine Learning Research, 5:1471-1530, 2004.

17. Latifur Khan, Mamoun Awad, and Bhavani Thuraisingham. A new intrusion detection system using
support vector machines and hierarchical clustering. International Journal on Very Large Databases,
16(4):507-521, 2007.

18. Marius Kloft and Pavel Laskov. Security analysis of online centroid anomaly detection. Journal of
Machine Learning Research, 13(1):3681-3724, 2012.

19. Levent Koc, Thomas A Mazzuchi, and Shahram Sarkani. A network intrusion detection system based
on a hidden naive Bayes multiclass classifier. Expert Systems with Applications, 39(18):13492-13500,
2012.

26

Uwe Dick, Tobias Scheffer

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

34.

35.

36.

37.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: probabilistic mod-
els for segmenting and labeling sequence data. In Proceedings of the International Conference on Ma-
chine Learning, 2001.

Yinhui Li, Jingbo Xia, Silan Zhang, Jiakai Yan, Xiaochuan Ai, and Kuobin Dai. An efficient intru-
sion detection system based on support vector machines and gradually feature removal method. Expert
Systems with Applications, 39(1):424-430, 2012.

H. Liu and K. Chang. Defending systems against tilt DDoS attacks. In Proceedings of the International
Conference on Telecommunication Systems, Services, and Applications, 2011.

Luke K. McDowell, Kalyan Moy Gupta, and David W. Aha. Cautious collective classification. The
Journal of Machine Learning Research, 10:2777-2836, 2009.

Jennifer Neville and David Jensen. Iterative classification in relational data. In Proc. AAAI-2000 Work-
shop on Learning Statistical Models from Relational Data, 2000.

Sandhya Peddabachigari, Ajith Abraham, Crina Grosan, and Johnson Thomas. Modeling intrusion detec-
tion system using hybrid intelligent systems. Journal of Network and Computer Applications, 30(1):114—
132, 2007.

Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. Survey of network-based defense mecha-
nisms countering the DoS and DDoS problems. ACM Computing Surveys, 39(1):3, 2007.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 21(4):682-697, 2008.

S. Ranjan, R. Swaminathan, M. Uysal, and E. Knightley. DDoS-resilient scheduling to counter applica-
tion layer attacks under imperfect detection. In Proceedings of IEEE INFOCOM, 2006.

William K. Robertson and Federico Maggi. Effective anomaly detection with scarce training data. In
Network and Distributed System Security Symposium, 2010.

Tianlin Shi, Jacob Steinhardt, and Percy Liang. Learning where to sample in structured prediction. In
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, pages
875-884, 2015.

Richard S. Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. In In Advances in Neural Information Processing
Systems 12, pages 1057-1063. MIT Press, 2000.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and
interdependent output variables. Journal of Machine Learning Research, 6:1453-1484, 2005.

. David Weiss and Ben Taskar. Structured prediction cascades. In International Conference on Artificial

Intelligence and Statistics, pages 916-923, 2010.

Michael Wick, Khashayar Rohanimanesh, Kedar Bellare, Aron Culotta, and Andrew McCallum. Sam-
plerank: Training factor graphs with atomic gradients. In Proceedings of the 28th International Confer-
ence on Machine Learning, pages 777-784, 2011.

Christian Wressnegger, Guido Schwenk, Daniel Arp, and Konrad Rieck. A close look on n-grams in
intrusion detection: Anomaly detection vs. classification. In Proceedings of the ACM Workshop on
Artificial Intelligence and Security, pages 67-76, 2013.

Y. Xie and S. Z. Yu. A large-scale hidden semi-markov model for anomaly detection on user browsing
behaviors. IEEE/ACM Transactions on Networking, 17(1):54-65, 2009.

Saman Taghavi Zargar, James Joshi, and David Tipper. A survey of defense mechanisms against
distributed denial of service (DDoS) flooding attacks. IEEE Communications Surveys & Tutorials,
15(4):2046-2069, 2013.

	Introduction
	Problem Setting, Motivating Application
	Anomaly Detection
	Independent Classification
	Structured Prediction with Approximate Inference
	Structured Prediction with a Parametric Decoder
	Identification of DDoS Attackers
	Experimental Study
	Discussion and Related Work
	Conclusion

